Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(6): 2793-2806, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30649478

RESUMO

The TATA-box Binding Protein (TBP) plays a central role in regulating gene expression and is the first step in the process of pre-initiation complex (PIC) formation on promoter DNA. The lifetime of TBP at the promoter site is controlled by several cofactors including the Modifier of transcription 1 (Mot1), an essential TBP-associated ATPase. Based on ensemble measurements, Mot1 can use adenosine triphosphate (ATP) hydrolysis to displace TBP from DNA and various models for how this activity is coupled to transcriptional regulation have been proposed. However, the underlying molecular mechanism of Mot1 action is not well understood. In this work, the interaction of Mot1 with the DNA/TBP complex was investigated by single-pair Förster resonance energy transfer (spFRET). Upon Mot1 binding to the DNA/TBP complex, a transition in the DNA/TBP conformation was observed. Hydrolysis of ATP by Mot1 led to a conformational change but was not sufficient to efficiently disrupt the complex. SpFRET measurements of dual-labeled DNA suggest that Mot1's ATPase activity primes incorrectly oriented TBP for dissociation from DNA and additional Mot1 in solution is necessary for TBP unbinding. These findings provide a framework for understanding how the efficiency of Mot1's catalytic activity is tuned to establish a dynamic pool of TBP without interfering with stable and functional TBP-containing complexes.


Assuntos
Adenosina Trifosfatases/fisiologia , DNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Fatores Associados à Proteína de Ligação a TATA/fisiologia , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Catálise , DNA Fúngico/química , Escherichia coli , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/química , Fatores Associados à Proteína de Ligação a TATA/metabolismo
2.
Biophys J ; 115(12): 2310-2326, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30527334

RESUMO

Single-pair Förster resonance energy transfer (spFRET) has become an important tool for investigating conformational dynamics in biological systems. To extract dynamic information from the spFRET traces measured with total internal reflection fluorescence microscopy, we extended the hidden Markov model (HMM) approach. In our extended HMM analysis, we incorporated the photon-shot noise from camera-based systems into the HMM. Thus, the variance in Förster resonance energy transfer (FRET) efficiency of the various states, which is typically a fitted parameter, is explicitly included in the analysis estimated from the number of detected photons. It is also possible to include an additional broadening of the FRET state, which would then only reflect the inherent flexibility of the dynamic biological systems. This approach is useful when comparing the dynamics of individual molecules for which the total intensities vary significantly. We used spFRET with the extended HMM analysis to investigate the dynamics of TATA-box-binding protein (TBP) on promoter DNA in the presence of negative cofactor 2 (NC2). We compared the dynamics of two promoters as well as DNAs of different length and labeling location. For the adenovirus major late promoter, four FRET states were observed; three states correspond to different conformations of the DNA in the TBP-DNA-NC2 complex and a four-state model in which the complex has shifted along the DNA. The HMM analysis revealed that the states are connected via a linear, four-well model. For the H2B promoter, more complex dynamics were observed. By clustering the FRET states detected with the HMM analysis, we could compare the general dynamics observed for the two promoter sequences. We observed that the dynamics from a stretched DNA conformation to a bent conformation for the two promoters were similar, whereas the bent conformation of the TBP-DNA-NC2 complex for the H2B promoter is approximately three times more stable than for the adenovirus major late promoter.


Assuntos
DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência , Cadeias de Markov , Proteína de Ligação a TATA-Box/metabolismo , Fatores de Transcrição/metabolismo , DNA/química , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , Proteína de Ligação a TATA-Box/química , Fatores de Transcrição/química
3.
Nat Struct Mol Biol ; 14(12): 1196-201, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17994103

RESUMO

The general transcription factors (GTFs) of eukaryotic RNA polymerase II, in a process facilitated by regulatory and accessory factors, target promoters through synergistic interactions with core elements. The specific binding of the TATA box-binding protein (TBP) to the TATA box has led to the assumption that GTFs recognize promoters directly, producing a preinitiation complex at a defined position. Using biochemical analysis as well as biophysical single-pair Förster resonance energy transfer, we now provide evidence that negative cofactor-2 (NC2) induces dynamic conformational changes in the TBP-DNA complex that allow it to escape and return to TATA-binding mode. This can lead to movement of TBP along the DNA away from TATA.


Assuntos
Fosfoproteínas/fisiologia , Regiões Promotoras Genéticas , TATA Box , Proteína de Ligação a TATA-Box/fisiologia , Fatores de Transcrição/fisiologia , DNA/química , Ensaio de Desvio de Mobilidade Eletroforética , Transferência Ressonante de Energia de Fluorescência , Humanos , Estrutura Molecular , Fosfoproteínas/química , Proteína de Ligação a TATA-Box/química , Fatores de Transcrição/química
4.
Anal Chem ; 76(4): 930-8, 2004 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-14961722

RESUMO

Polyamidoamine (PAMAM) dendrimers were modified and tested for use as solution-phase diffusion probes in silica nanostructures. In order for the successful application of dendrimers as solution-phase probes, their interactions with silica surfaces must be understood and controlled, so that the motion of the probe is not influenced by adsorption. Adsorption/desorption kinetics of PAMAM dendrimers and their diffusion in solution near silica surfaces were investigated with total internal reflection fluorescence correlation spectroscopy (TIR-FCS). Dendrimers of generations 3, 5, and 7 were dye-labeled with carboxyrhodamine 6G. Because PAMAM dendrimers are positively charged in solution (having primary amines as end groups), significant adsorption of these molecules to the negatively charged silica surface was observed. Adsorption/desorption rates and the equilibrium constant for adsorption were determined by fitting the autocorrelation functions to a kinetic model. The desorption rate decreases and the absorption equilibrium constant increases with higher dendrimer generation. To reduce the adsorption of these probes to silica surfaces, the labeled dendrimers were reacted with succinic anhydride, converting the primary amine end groups to negatively charged carboxylic acid groups. These carboxylated dendrimers did not detectably adsorb to silica from aqueous solution. TIR-FCS was used to determine their free-solution diffusion constants near silica surfaces, and the corresponding hydrodynamic radii compare favorably with values reported from forced Rayleigh scattering measurements.

5.
Anal Chem ; 76(4): 939-46, 2004 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-14961723

RESUMO

Three generations of poly(amidoamine) dendrimers were dye-labeled and chemically modified to have terminal carboxyl groups and used as variably sized probes to study diffusion in thin sol-gel films. Total internal reflection fluorescence spectroscopy experiments, both correlation and concentration-jump measurements, were employed to measure the relative populations and effective diffusion coefficients of dendrimers in the films. For films prepared from small (27-nm) silica particles, larger dendrimers could be completely excluded from penetrating the sol-gel structure. In films made of larger (150-nm) particles with correspondingly larger pores, concentration-jump experiments showed that larger dendrimers are excluded from more of the intraparticle pore space than small dendrimers. Similarly, fluorescence-correlation measurements showed that the diffusion of smaller dendrimers exhibited greater tortuosity than larger dendrimers in the interparticle pores of the film. The smaller dendrimers explore a greater volume of smaller, more convoluted pores, whereas larger dendrimers penetrate a smaller volume of larger, more open pores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...